Abstract
Very thin asphalt overlays (VTAOs) have been widely used as a cost-effective preventive maintenance measure in various countries. However, because of the complex combinations of aggregate gradations and asphalt materials, the selection of VTAOs is an unsolved problem that is extremely important for pavement management authorities. Therefore, this study proposed a comprehensive evaluation method for VTAOs based on the analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS). Three VTAO mixtures comprising different aggregate gradations (stone mastic asphalt (SMA), open-graded friction course (OGFC), and asphalt concrete (AC)) and different asphalt materials (organic silicon (OS) and styrene-butadiene-styrene (SBS)) were investigated and preliminarily compared in the laboratory. Subsequently, four road performance indicators (pavement condition indicator, British pendulum number, texture depth, and international roughness index) were selected as the evaluation indices, and their weights were calculated using the AHP according to the questionnaires collected from specialists. Finally, the field test data of the road performance indicators with scale confusion were handled using TOPSIS, and the closeness was considered as the final evaluation criterion. The results indicated that the mixture of AC and SBS exhibited the best performance among the three investigated mixtures. Categorizing the evaluation indicators into two aspects—the strength aspect and the structural aspect—it is found that the strength aspect of a VTAO is mainly affected by the asphalt materials, whereas the structural aspect of a VTAO is mainly affected by the aggregate gradation. This study provides a practical method for evaluating the road performance of VTAO with diverse measurement indices, as well as a quantitative scope for the impacts of the aggregate gradation and asphalt materials on the road performance.
Funder
National Natural Science Foundation of China
Shanghai Pujiang Program
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献