Estimating the Effect of Vibration Mixing Process on Air Pore Size Distributions in Concrete Using Digital Image Analysis

Author:

Yang Fa,Yao Yunshi,Wei Jin,Wang Xinxin,Feng Zhongxu

Abstract

Concrete is a typical porous material, in which the air voids entrained or entrapped during the mixing process have a significant impact on the material’s strength and durability. An automatic methodology based on digital image analysis was used to examine the influence of a novel mixing process with vibration on the entrapped air pore size and distribution of concrete in this paper. The volume of permeable spaces and porosity in hardened concrete are found to be greatly reduced when using the vibration mixing process compared to the reference concrete. Meanwhile, the quantity of air pores and their specific surface area are positively associated with the vibration acceleration, while the average equivalent pore diameter decreases. The findings of the analysis of variance (ANOVA) reveal that the population means for porosity, quantity, and pore size are significantly different when utilizing the vibration or non-vibration mixing processes. Furthermore, the pore size distribution curves show that the vibration mixing process significantly modified the pore structure by reducing the number of larger size pores and increasing the amount of small size pores. This may be attributed to a series of changes in the bubbles during the vibration mixing process. In addition, the findings of freeze-thaw resistance and water penetration resistance reveal that, owing to the vibration mixing process, the impermeability and durability of the concrete are significantly improved.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3