Research on the Characteristics of High-Temperature Heat Waves and Outdoor Thermal Comfort: A Typical Space in Chongqing Yuzhong District as an Example

Author:

Huang Haijing,Jie Pengyu

Abstract

For the high-density urban space heat wave problem, take the core urban area of the mountainous city of Chongqing as an example, four types of typical urban functional spaces, including commercial areas, residential areas, mountain parks, and riverfront parks, were measured during a heat wave cycle, and the characteristics of high-temperature heat waves in different urban spaces were compared through the analysis of air temperature, surface temperature, relative humidity, solar thermal radiation, and other thermal environment parameters. Combined with the questionnaire research related to the heat comfort of the urban population, the physiological equivalent temperature (PET) was selected to describe the heat sensation of the human body, to summarize the elements and patterns of the influence of heat waves on heat comfort of the population in urban spaces, and to establish a prediction model of outdoor heat comfort in summer. It shows that: (1) temperatures recorded during the heat waves are influenced by urban space elements and are differentiated, with older residential areas recording the highest temperatures, followed by commercial areas, and green park areas comparing favorably with both; (2) crowd thermal comfort is correlated with the thermal environment formed by space elements, PET is significantly positively correlated with air temperature, thermal radiation and surface temperature, and significantly negatively correlated with relative humidity, air temperature and thermal radiation have more influence on thermal comfort has a greater impact, while relative humidity and surface temperature have a relatively small impact; (3) reasonable spatial form and shade planning, vegetation and water body settings, high thermal storage substrate and other design elements can alleviate high-temperature heat waves, reduce the thermal neutral temperature and improve thermal comfort. The research results provide some basis for the investigation of the formation mechanism of high-temperature heat waves in mountainous cities and the optimal design of urban spatial thermal environment.

Funder

National Social Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference69 articles.

1. Climate Change 2007. Impacts, Adaptation, and Vulnerability,2007

2. Summary for policymakers,2013

3. The Global Climate 2001–2010: A Decade of Climate Extremes Summary Report [EB/OL]https://library.wmo.int/pmb_ged/wmo_1119_en.Pdf

4. WMO Statement on the State of the Global Climate in 2017 [EB/OL]https://library.wmo.int/doc_num.php?explnum_id=4453

5. The impact of heat waves and cold spells on mortality rates in the Dutch population.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3