Uncertainty Analysis of Inverse Problem of Resistivity Model in Internal Defects Detection of Buildings

Author:

Xu ShanORCID,Wang Xinran,Zhu Ruiguang,Wang DingORCID

Abstract

Fissure detection in ancient buildings is of vital importance in the evaluation of resistance or remediation in urban areas. Electrical resistivity imaging is an efficient tool to detect fissures or moisture erosion in buildings by highlighting the resistivity contrasts in the inversion models. The traditional results of ERT images give deterministic interpretations of the internal artifact. However, the existence of equivalent models may correspond to different physical realities in engineering cases, to which the traditional ERT model cannot respond. In this paper, through the application of a field test on an ancient wall, it is shown that the segmentation of the equivalent model family is applicable to solve the internal defects detection problem in a probabilistic approach. It is achieved by performing a probabilistic approach to apply the uncertainty analysis. The procedure begins with the reduction in dimensions of the model by spectral decomposition, and the uncertainty space is rebuilt via Particle Swarm Optimization (PSO). By computing the uncertainty space, probabilistic maps are created to demonstrate the electrical anomaly in a simpler structure. The proposed method provides a more accurate approach for the internal defects detection of buildings by considering the possibilities hidden in the equivalent model family of ERT results.

Funder

Natural Science Foundation of Hebei Province

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3