Seismic Fragility Assessment of SMRFs Equipped with TMD Considering Cyclic Deterioration of Members and Nonlinear Geometry

Author:

Hemmati Khollari Mohammad Reza1ORCID,Asadi Azita1,Tajammolian Hamed1

Affiliation:

1. Department of Civil Engineering, Yazd University, the University Blvd, Safayieh, Yazd 8915818411, Iran

Abstract

This paper presents seismic fragility curves to assess the effect of far-field ground motions on the behavior of high-rise steel moment resisting frame (SMRF) structures equipped with Tuned Mass Damper, considering the cyclic deterioration of members and P-Delta effect in the nonlinear region. For this purpose, three 8-, 20-, and 30-story SMRF structures are selected, 44 earthquake record sets are extracted from the FEMA P-695, Incremental Dynamic Analysis (IDA) is operated, and four structural damage states are considered through the framework of HAZUS, including slight, moderate, extensive, and complete. Maximum structural inter-story drift and floor acceleration are employed to quantify the damage states, and spectral acceleration is used as the intensity measure. Results show that the Tuned Mass Damper can reduce the probability of damage under earthquake excitation in all damage states for both structural and non-structural elements. The decline varies from 4.0% to 20.0%, depending on the ground motion intensity level, based on engineering demand parameters. Moreover, it is clear that nonlinear properties and component deterioration under cyclic excitation can affect structural response in all damage states, which concerns the obtained curves.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3