Strength Estimation and Feature Interaction of Carbon Nanotubes-Modified Concrete Using Artificial Intelligence-Based Boosting Ensembles

Author:

Zhu Fei12,Wu Xiangping3,Lu Yijun4,Huang Jiandong4

Affiliation:

1. School of Fine Arts, Suzhou Vocational University, Suzhou 215104, China

2. School of Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Gem Design Engineering, KAYA University, Gimhae 50830, Republic of Korea

4. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

The standard approach for testing ordinary concrete compressive strength (CS) is to cast samples and test them after different curing times. However, testing adds cost and time to projects, and, therefore, construction sites experience delays. Because carbon nanotubes (CNTs) vary in length, composition, diameter, and dispersion, experiment and formula fitting alone cannot reliably predict the strength of CNTs-based composites. For empirical equations or traditional statistical approaches to properly forecast complex materials’ mechanical characteristics, various significant parameters, databases, and nonlinear relationships between variables must be considered. Machine learning (ML) tools are the most advanced for accurate predictions of material behaviour. This study employed gradient boosting, light gradient boosting machine, and extreme gradient boosting techniques to forecast the CS of CNTs-modified concrete. Also, in order to explore the influence and interaction of various features, an interaction analysis was conducted. In terms of R2, gradient boosting, light gradient boosting machine, and extreme gradient boosting models proved their accuracy. Extreme gradient boosting had the highest R2 of 0.97, followed by light gradient boosting machine and gradient boosting with scores of 0.94 and 0.93, respectively. This type of research may help both academics and industry forecast material properties and influential elements, thereby reducing lab test requirements.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3