Affiliation:
1. School of Fine Arts, Suzhou Vocational University, Suzhou 215104, China
2. School of Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
3. Department of Gem Design Engineering, KAYA University, Gimhae 50830, Republic of Korea
4. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
Abstract
The standard approach for testing ordinary concrete compressive strength (CS) is to cast samples and test them after different curing times. However, testing adds cost and time to projects, and, therefore, construction sites experience delays. Because carbon nanotubes (CNTs) vary in length, composition, diameter, and dispersion, experiment and formula fitting alone cannot reliably predict the strength of CNTs-based composites. For empirical equations or traditional statistical approaches to properly forecast complex materials’ mechanical characteristics, various significant parameters, databases, and nonlinear relationships between variables must be considered. Machine learning (ML) tools are the most advanced for accurate predictions of material behaviour. This study employed gradient boosting, light gradient boosting machine, and extreme gradient boosting techniques to forecast the CS of CNTs-modified concrete. Also, in order to explore the influence and interaction of various features, an interaction analysis was conducted. In terms of R2, gradient boosting, light gradient boosting machine, and extreme gradient boosting models proved their accuracy. Extreme gradient boosting had the highest R2 of 0.97, followed by light gradient boosting machine and gradient boosting with scores of 0.94 and 0.93, respectively. This type of research may help both academics and industry forecast material properties and influential elements, thereby reducing lab test requirements.