Intelligent Risk Prognosis and Control of Foundation Pit Excavation Based on Digital Twin

Author:

Sun Zhe,Li Haoyang,Bao Yan,Meng XiaolinORCID,Zhang Dongliang

Abstract

Timely risk information acquisition and diagnosis during foundation pit excavation (FPE) processes are vital for ensuring the safe and effective construction of underground urban infrastructures. Unfortunately, diverse geological and hydrogeological conditions and complex shapes of the foundation pit create barriers for reliable FPE risk prognosis and control. Furthermore, typical support systems during FPE use temporary measures, which have limited capacity to confront excessive loads, large deformations, and seepage. This study aims to establish an intelligent risk prognosis and control framework based on digital twin (DT) for ensuring safe and effective FPE processes. Previous studies have conducted extensive experimental and numerical analyses for examining unsafe conditions during FPE. How to enable intelligent risk prognosis and control of tedious FPE processes by integrating physics-based models and sensory data collected in the field is still challenging. DT could help to establish the interaction and feedback mechanisms between the physical and virtual space. In this study, the authors have established a DT model that consists of a physical space model and a high-fidelity physics-based model of a foundation pit in virtual space. As a result, a mechanism for effective acquisition and fusion of heterogeneous information from both physical and virtual space is established. Then, the authors proposed an integrated model and data-driven approach for examining safety risks during FPE. In the end, the authors have validated the proposed method through a case study of the FPE of the Wuhan Metro Line. The results show that the proposed method could provide theoretical and practical support for future intelligent FPE.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3