Analysis of the Effect of Mainshock-Aftershock Sequences on the Fragility of RC Bridge Columns

Author:

Wang TongxingORCID,Han Qiang,Wen Jianian,Wang Lihui

Abstract

The mainshock (MS) is often accompanied by a number of aftershocks (AS). The existence of AS may cause the seismic demand to be greater than the MS. In order to better evaluate the impact of AS, this paper takes RC columns as the research object and performs incremental dynamic analysis (IDA) on the actual recorded mainshock-aftershocks (MS-AS). The Park–Ang model and incremental damage index are used to quantify the effect of the MS and AS, respectively. The damage and fragility analysis of the parameters such as reinforcement ratio, axial compression ratio and shear-span ratio are carried out respectively. The results show that the seismic demand of the MS-AS is greater than the MS. Besides, the damage of the column gradually increases with the increase of axial compression ratio and shear-span ratio, and gradually decreases with the increase of the reinforcement ratio. When the seismic design grade is 7, 8, and 9 degree, the maximum increase rate of additional damage caused by aftershocks is 7, 13, and 15% of the MS, respectively. When the column is in a medium damaged and a severely damaged state, the growth rate of additional damage can be estimated to be 12.7 and 11% of the MS, respectively. The fragility of columns in different damage states under the action of MS-AS is greater than that of MS. Reducing the axial pressure ratio can greatly reduce the damage probability of columns in different damage states. The effect of the MS-AS can be comprehensively considered to select appropriate design parameters in the design, and the additional damage caused by the AS can be estimated according to the damage condition of the column.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3