In-Plane Lateral Performance of AAC Block Walls Reinforced with CFPR Sheets

Author:

Saad Ahmad S.,Ahmed Taha A.ORCID,Radwan Ali I.

Abstract

This study evaluates the structural behavior of aerated autoclave concrete (AAC) blocks laterally loaded in the in-plane direction under quasi-static loading. The study started with the evaluation of the basic physical properties of the AAC blocks, including its structural properties (individually and as part of an assembly), followed by large-scale testing of two (half-scaled) walls constructed with commercially available AAC blocks. The first wall was unreinforced, similar to the commonly used construction technique for low-rise houses where AAC blocks are utilized. The second one was internally reinforced with short dowels connecting the foundation to the walls through their lower block rows and externally reinforced with carbon-fiber-reinforced polymer (CFRP) sheets through the entire wall height. The reinforcement scheme was conducted in such a way that does not delay construction time. Reinforcing the wall significantly increased the strength of the wall in the in-plane direction. The reinforced wall exhibited increased initial stiffness, higher ductility, and larger energy dissipation, in addition to a change in the failure mode. The unreinforced wall failure mode was dominated by blocks sliding, while the reinforced wall failure was dominated by compressive shear failure with wall uplifting. The findings of this study can be implemented to increase the lateral strength of unreinforced new houses and can also be extended to strengthen existing houses built with unreinforced AAC blocks.

Publisher

MDPI AG

Subject

General Engineering,Energy Engineering and Power Technology

Reference47 articles.

1. A comprehensive Study of the Material Properties and Structural Behavior of AAC Products;Snow;Ph.D. Dissertation,1999

2. Mechanical Properties of Autoclaved Aerated Concrete with Different Densities

3. The History of AAC https://web.archive.org/web/20101204154720/http://www.hebel.co.nz:80/about/hebel%20history.php

4. Design of seismic retrofit measures for concrete and masonry structures

5. Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3