A Calculation Model for Vibration Effect Induced by Resonance-Free Vibratory Hammer Method

Author:

Cheng XinjunORCID,Xu Xiang,Bai Wen,Hu Zhinan,Liang Haian,Cui Jie

Abstract

Buildings close to the ground treated by the resonance- free vibratory hammer method are often vulnerable to excessive vibrations. An in situ test of an urban soft site was carried out to investigate the resonance-free vibratory hammer induced vibration effects during construction. Vibration pickups were set at the positions with distances of 15 m, 30 m, 50 m, and 100 m away from the vibration source. On the basis of the results obtained from this investigation, vibration effects of the resonance-free vibratory hammer and safe construction distances were systematically analyzed. The testing results indicate that the vibration in the vertical direction is stronger than that in the other two horizontal directions. The vertical vibration should be the main reference quantity for the foundation treatment by using the resonance-free vibratory hammer method. The predominant frequency of each measuring point in the same direction decreased with an increase of the distance from the vibration source (DFTVS). In terms of the measuring point with a DFTVS of 30 m, the peak values of velocity in all directions were within 5 mm/s, which meet the requirements of the allowable limit of building vibration. According to the in situ testing results, a model for calculating the acceleration exponent of the vibration caused by the resonance-free vibratory hammer technology was established by comprehensively considering the amplitude of acceleration, the attenuation coefficient of THE DFTVS, and the vibration correction factor. Finally, the reliability of the calculation model was verified through the comparison between the calculated results and field vibration experimental results, in which all the correlation coefficients of validation example were above 0.9.

Funder

Scientific Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3