Axial Compression Damage Model and Damage Evolution of Crumb Rubber Concrete Based on the Energy Method

Author:

Guo Tongge1,Xue Gang1,Fu Bolun1

Affiliation:

1. College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

The current constitutive model and damage evolution law of crumb rubber concrete (CRC) were obtained by fitting and changing parameters based on the normal concrete model. However, this model does not accurately reflect the characteristics of the material. In this paper, we studied the energy dissipation in the failure process of CRC to derive the constitutive model and damage evolution law of CRC based on the energy method. Four substitution rates of 5%, 10%, 15%, and 20% were selected, and the rubber concrete prism was prepared by replacing the natural fine aggregate with the same volume of crumb rubber aggregate. After that, uniaxial compressive tests were conducted. The energy lost due to the damage was calculated and analyzed, and the energy method was used to establish the damage evolution law and damage model of the crumb rubber concrete. The results demonstrated that the Guo Zhenhai damage model, which is based on the energy method, can more effectively explain the crumb rubber concrete stress–strain full curve, and the energy consumed as a result of the damage exhibits a growing and then reducing pattern with the increase in rubber doses. When the energy-based method is used, the Guo Zhenhai damage evolution model is similar to the damage evolution law calculated using the SIR damage evolution model. During uniaxial compression damage, rubber concrete with various rubber dosages demonstrated varying energy absorption in different deformation phases. When the rubber particle content was 10%, the energy absorption capacity of the specimen was 6.9% higher than that of normal concrete.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference50 articles.

1. Mechanical properties of emulsified asphalt rubber concrete;Lin;Acta Mater. Compos. Sin.,2023

2. Comprehensive modification of emulsified asphalt on improving mechanical properties of crumb rubber concrete;Lin;Constr. Build. Mater.,2023

3. Crumb rubber as partial replacement for fine aggregate in concrete: An overview;Ren;Constr. Build. Mater.,2022

4. Mechanical properties and frost resistance of recycled brick aggregate concrete modified by nano-SiO2;Su;Nanotechnol. Rev.,2023

5. Macroscopic mechanical properties and microstructure characteristics of steel slag fine aggregate concrete;Xue;J. Build. Eng.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3