Measurements and Evaluation of Road Traffic-Induced Micro-Vibration in a Workshop Equipped with Precision Instruments

Author:

Zhang Zhijun1ORCID,Li Xiaozhen2,Zhang Xun2ORCID,Xu Guihong1,Wu Anjie1

Affiliation:

1. School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China

2. State Key Laboratory of Bridge Intelligent and Green Construction, Southwest Jiaotong University, Chengdu 611756, China

Abstract

Road traffic transportation has flourished in the process of urbanization due to its advantages, but concurrently it generates harmful environmental vibrations. This vibration issue becomes particularly crucial in production workshops housing precision instruments. However, limited research has been undertaken on this matter. This study aimed to investigate the influence of road traffic-induced vibration on micro-vibrations within a workshop housing precision instruments. A field test was conducted to assess the vibration levels originating from both machinery operation and vehicular traffic. The results indicated that ground-borne vibrations caused by road vehicles decrease with increasing propagation distance, peaking around 10 Hz. Machinery operation vibrations were primarily concentrated above 20 Hz, while vehicular traffic vibrations were more prominent below 20 Hz. Notably, the passage of heavy trucks significantly impacted both ground and workshop vibrations, with vertical vibrations being particularly significant. Within the workshop, the second floor experienced higher vibrations above 20 Hz due to the presence of installed instruments. Importantly, the micro-vibration levels on both floors exceeded the VC-C limit (12.5 µm/s), highlighting the need to account for road traffic and machinery vibrations in workshop design. These data can be utilized to validate numerical models for predicting road traffic-induced vibrations, aiding in vibration assessment during road planning and design.

Funder

National Natural Science Foundation of China

Startup Project for High-Level Talents of Guizhou Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3