Affiliation:
1. School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China
2. State Key Laboratory of Bridge Intelligent and Green Construction, Southwest Jiaotong University, Chengdu 611756, China
Abstract
Road traffic transportation has flourished in the process of urbanization due to its advantages, but concurrently it generates harmful environmental vibrations. This vibration issue becomes particularly crucial in production workshops housing precision instruments. However, limited research has been undertaken on this matter. This study aimed to investigate the influence of road traffic-induced vibration on micro-vibrations within a workshop housing precision instruments. A field test was conducted to assess the vibration levels originating from both machinery operation and vehicular traffic. The results indicated that ground-borne vibrations caused by road vehicles decrease with increasing propagation distance, peaking around 10 Hz. Machinery operation vibrations were primarily concentrated above 20 Hz, while vehicular traffic vibrations were more prominent below 20 Hz. Notably, the passage of heavy trucks significantly impacted both ground and workshop vibrations, with vertical vibrations being particularly significant. Within the workshop, the second floor experienced higher vibrations above 20 Hz due to the presence of installed instruments. Importantly, the micro-vibration levels on both floors exceeded the VC-C limit (12.5 µm/s), highlighting the need to account for road traffic and machinery vibrations in workshop design. These data can be utilized to validate numerical models for predicting road traffic-induced vibrations, aiding in vibration assessment during road planning and design.
Funder
National Natural Science Foundation of China
Startup Project for High-Level Talents of Guizhou Institute of Technology