Dynamic Characteristic and Parameter Analysis of a Modular Building with Suspended Floors

Author:

He Qingguang,Zhang Shiquan,Shang Jiying

Abstract

Over the past few years, modular buildings have become an important form of environmentally friendly architecture. Prefabricated construction methods have gained a lot of attention because they produce less construction waste and require less labor and water. However, the seismic performance of modular buildings needs to be improved. This paper proposes a prefabricated steel module with a suspended floor, which is based on a multi-tuned mass damped floor system. This paper also derives the form of a motion equation which is unified with the construction process of modular buildings, which can describe the change law of the mass, stiffness, and damping matrix of the structure in the processes of connecting the main structure with the suspended floor slab and of joining different floors. Since the performances of tuned mass damping devices are closely related to the dynamic characteristics of the structure, this paper uses ABAQUS for numerical analysis and mathematical induction (MI) to propose and verify a simplified method for calculating the lateral stiffness of the entire story from a single module’s lateral stiffness. Based on the principle of reducing the stiffness difference in the structure along different directions, a standard scheme of the horizontal extension of the module building is also specified. The results show that the simplified calculation method is reasonable and that the lateral stiffness of the structure increases linearly with the number of modules. Finally, the recommended values for the tuned frequency ratio and tuned damping ratio are given by investigating the dynamic response of the structure under Gaussian white noise excitation. The results show that the recommended tuning frequency ratio and damping ratio ranges in modular buildings are close to those for FIS buildings.

Funder

Gansu Construction Tech. Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3