Blast-Resistance and Damage Behavior of Underwater Explosion for Concrete Gravity Dam Considering Concrete Strength Partition

Author:

Huo Wenlong12

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China

2. School of Civil Engineering, Tianjin University, Tianjin 300350, China

Abstract

The consequences of dam damage caused by explosions, wars, and terrorist attacks are extremely serious, and they can cause casualties among downstream residents. Studying the damage behaviors of dams is a prerequisite for improving their anti-knock performance. Researchers view the dam as homogeneous for research; but in reality, the concrete strength of the dam decreases from bottom to top. The partitioning of dam concrete strength can meet the different functional and economic requirements of a concrete gravity dam (referred to as concrete strength partition gravity dam (CSPGD)). Therefore, CSPGD shows a more complex dynamic performance and failure characteristics under the impact load of an underwater explosion. First, by investigating the current status of anti-knock research on CSPGDs, a fully coupled finite element numerical model for an underwater explosion of CSPGD was established. Considering the initial stress such as the self-weight of the dam, the upstream reservoir hydrostatic pressure, and the uplift pressure of the dam foundation during the service period, the anti-knock performance of CSPGD was studied. The results showed that the interface of CSPGD had a strain rate effect under the action of blast load, and it was easy to produce tensile failure at a low strain rate. In addition, the dynamic response and damage characteristics under different explosion scenarios such as explosive charge weight (w), detonation depth (D), and standoff distance (R) were further studied. The dam crest was always a weak anti-knock part, and the foundation anti-sliding stability was also very important to dam safety. Therefore, it was proposed and suggested to use the crack length of the dam crest and dam foundation to evaluate the overall anti-knock capacity of CSPGD. The study also found that the detonation depth affected the response time of dam damage and had a significant impact on the anti-knock performance of CSPGD.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3