End-One-Flange Web Crippling Behavior of Cold-Formed High-Strength Steel Channels with Web Holes at Elevated Temperatures

Author:

Fang Zhiyuan12,Roy Krishanu1ORCID,Chandramohan Dinesh Lakshmanan1ORCID,Yousefi Amirmohammad3,Al-Radhi Yazeed2,Lim James B. P.12ORCID

Affiliation:

1. School of Engineering, The University of Waikato, Hamilton 3240, New Zealand

2. Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand

3. School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia

Abstract

This paper investigates the web crippling strength of cold-formed high-strength steel (CHS) channels with centered web holes subjected to end-one-flange (EOF) loading at elevated temperatures, considering both flanges fastened and unfastened to load plates conditions. The stress-strain curve and material properties for CHS (S690QL steel grade) channels were adopted from the literature, where the temperatures ranged from 20 to 800 °C. The material characteristics were incorporated into finite element (FE) models using ABAQUS. The developed FE model was then validated against the published test results to evaluate the effects of various parameters including web hole diameter, bearing length, cross-section sizes, and flange fastening conditions of such channels at elevated temperatures, and a comprehensive parametric investigation including a total of 1710 validated finite element models was performed. From the parametric study results, it was found that the web crippling strength reduction factor is sensitive to the changes of the hole size and the bearing length, with the parameters of hole size having the largest effect on the web crippling reduction factor; however, the web crippling strength reduction factor remains stable when the temperature is changed from 20 to 800 °C. According to the FEA results, new reliable web crippling strength reduction factor equations for such CHS channels were proposed. In the comparison of proposed design strengths to the numerical failure load, the proposed design equations are suitable to predict the web crippling strength for CHS channels subject to EOF loading at ambient and elevated temperatures.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3