Ensuring Earthquake-Proof Development in a Swiftly Developing Region through Neural Network Modeling of Earthquakes Using Nonlinear Spatial Variables

Author:

Basharat Mubeen ul,Khan Junaid Ali,Khalil UmerORCID,Tariq AqilORCID,Aslam BilalORCID,Li QingtingORCID

Abstract

Northern Pakistan, the center of major construction projects due to the commencement of the China Pakistan Economic Corridor, is among the most earthquake-prone regions globally owing to its tectonic settings. The area has experienced several devastating earthquakes in the past, and these earthquakes pose a severe threat to infrastructure and life. Several researchers have previously utilized advanced tools such as Machine Learning (ML) and Deep Learning (DL) algorithms for earthquake predictions. This technological advancement helps with construction innovation, for instance, by designing earthquake-proof buildings. However, previous studies have focused mainly on temporal rather than spatial variables. The present study examines the impact of spatial variables to assess the performance of the different ML and DL algorithms for predicting the magnitude of short-term future earthquakes in North Pakistan. Two ML methods, namely Modular Neural Network (MNN) and Shallow Neural Network (SNN), and two DL methods, namely Recurrent Neural Network (RNN) and Deep Neural Network (DNN) algorithms, were used to meet the research objectives. The performance of the techniques was assessed using statistical measures, including accuracy, information gain analysis, sensitivity, specificity, and positive and negative predictive values. These metrics were used to evaluate the impact of including a new variable, Fault Density (FD), and the standard seismic variables in the predictions. The performance of the proposed models was examined for different patterns of variables and different classes of earthquakes. The accuracy of the models for the training data ranged from 73% to 89%, and the accuracy for the testing data ranged from 64% to 85%. The analysis outcomes demonstrated an improved performance when using an additional variable of FD for the earthquakes of low and high magnitudes, whereas the performance was less for moderate-magnitude earthquakes. DNN, and SNN models, performed relatively better than other models. The results provide valuable insights about the influence of the spatial variable. The outcome of the present study adds to the existing pool of knowledge about earthquake prediction, fostering a safer and more secure regional development plan involving innovative construction.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3