Enhancing the Surface Structure of Public Filler and Macroscopic Properties of Recycled Cement Mortar Using Polyethyleneimine

Author:

Cheng Chen1,Chiang Kingsley1,Wang Xinxin1,Qu Xiaoyang1,Zhu Yazhi2ORCID,Luo Hui3

Affiliation:

1. China State Construction Engineering (Hong Kong) Limited, Hong Kong 999077, China

2. Department of Structural Engineering, Tongji University, Shanghai 200092, China

3. School of Civil Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

This study introduces an innovative approach by modifying a commonly used filler with a natural compound, PEI. Fine aggregates within the filler were treated with different contents of PEI solutions. This research thoroughly examined the filler’s pore structure, mineral composition, physical characteristics, and surface morphology. Additionally, this study explored the effects of PEI-treated fine aggregates on the macroscopic features of recycled cement mortar, focusing on aspects like flowability, compressive strength, capillary water absorption, and chloride ion permeability. The findings revealed that treating the fine aggregates with PEI decreased the pore volume by up to 28.2% compared to untreated samples. This improvement in the microstructure may originate from the formation of calcite and its by-products, which occupy the pores with nanoparticles generated in situ. Furthermore, the modification with polyethyleneimine resulted in a wavy, plate-like structure that not only enhanced the surface morphology but also improved the compressive strength and chloride ion permeability. Furthermore, it significantly reduced capillary water absorption by 32% to 51%, thereby enhancing the material’s durability. The present study underscores the superior advantages of PEI modification as a promising strategy to enhance the viability of public fine aggregates.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3