A Parametric Study on the Effects of Green Roofs, Green Walls and Trees on Air Quality, Temperature and Velocity

Author:

Hosseinzadeh AzinORCID,Bottacin-Busolin AndreaORCID,Keshmiri Amir

Abstract

The rapid increase in urbanisation and population growth living in urban areas leads to major problems including increased rates of air pollution and global warming. Assessing the impact of buildings on wind flow, air temperature and pollution dispersion on people at the pedestrian level is, therefore, of crucial importance for urban design. In this study, the effect of different forms of urban vegetation including green roofs, green walls and trees on velocity, air temperature and air quality is assessed using computational fluid dynamics (CFD) for a selected area of the East Village. This study indicates that adding a building increases air temperature, pollution concentration and velocity at the pedestrian level. A parametric analysis is conducted to assess the impact of various key parameters on air temperature, pollution and velocity at the pedestrian level. The variables under consideration include wind speed, ranging from 4–8 m/s at a reference height of 10 m, and vegetation cooling intensity, ranging from 250–500 W·m−3. Three scenarios are tested in which the streets have no bottom heating, 2 °C bottom heating and 10 °C bottom heating. Pollution is simulated as a form of passive scalar with an emission rate of 100 ppb s−1, considering NO2 as the pollutant. In all cases, vegetation is found to reduce air velocity, pollutant concentration and temperature. However, the presence of vegetation in various forms alters the pattern of pollution dispersion differently. More specifically, the results indicate that planting trees (e.g., birch trees) close to the edge of buildings can decrease the air temperature by up to 2–3 °C at the pedestrian level. Increasing the cooling intensity of the vegetation from 250 to 500 W·m−3 results in significantly lower air temperature, whereas lower wind speeds result in a higher concentration of pollutants at the pedestrian level. A combination of green walls and trees is found to be the most effective strategy to improve the thermal environment and air quality.

Funder

UKRI’s funding

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3