Effect of High-Tenacity Polypropylene Fibers on the Carbonation Resistance of Expanded Polystyrene Concrete

Author:

Wang Shifang1,Xu Shangquan2,Han Yong2,Dong Weiqi2,Zhang Zhicheng1,Yu Kaisheng1,Lin Wei3,Yuan Ji1,He Haijie1,Lin Hongjian1,Xu Wen1,Ren Zhiyuan1

Affiliation:

1. College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China

2. Taizhou Urban and Rural Planning and Design Institute Co., Ltd., Taizhou 318000, China

3. Tiansong Construction Group Co., Ltd., Wenling 317500, China

Abstract

Expanded polystyrene concrete (EPSC) is increasingly utilized in buildings as a green building material. To investigate the effect of high-tenacity polypropylene (HTPP) fibers on the carbonation resistance (CR) of EPSC, five groups of EPSC specimens with HTPP fiber volume fractions of 0%, 0.6%, 0.9%, 1.2%, and 1.5% were prepared. Rapid carbonation tests were conducted to measure the carbonation depth (CD) and uniaxial compression strength (UCS) of the specimens at different carbonation ages (3, 7, 14, and 28 days). The CD and UCS of the specimens were calculated and analyzed. The results indicated that the HTPP fibers dramatically improved the CR of EPSC, with a decrease in the CD of up to 29.5% at 28 days. A model for predicting the CD of EPSC was developed. The model for the strength after carbonation also showed good agreement with the experimental results. Scanning electron microscopy (SEM) was used to examine the microstructure of the HTPP-reinforced EPSC, while the mechanism of HTPP fibers to enhance the CR of EPSC was elucidated. The findings of this study provide valuable insights for the application of EPSC as a structural material.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3