Nonlinear Dynamic Analysis of the Wind–Train–Bridge System of a Long-Span Railway Suspension Truss Bridge

Author:

Wang Shaoqin,Wan XingORCID,Guo Minghao,Qiao Hong,Zhang Nan,Ye Qing

Abstract

In order to study the coupling vibration between a bridge and a train under the action of crosswind loads, a dynamic interaction model of the wind–train–bridge system is established considering the geometric nonlinear factors of a long-span suspension bridge. A calculation frame is composed, and a corresponding computer program is written. A long-span highway–railway suspension bridge scheme is studied as an example. The linear and nonlinear vibration responses of the bridge under the simultaneous action of both train loads and wind loads are compared using the self-written program, and the influence of wind velocity and train speed on the dynamic responses of the bridge is studied. The results show that the large displacement nonlinearity of the structure does not influence the changing tendency of bridge displacement and acceleration time histories, but reduces the maximum values of the responses. The geometric nonlinear influence on the bridge accelerations is more obvious than that on the displacements. The natural frequencies of this long-span suspension bridge are very low and it is sensitive to wind action. The changes in train speed and average wind velocity have a great influence on the maximum value of bridge displacement, especially when the lateral deformation and acceleration increase sharply with the wind velocity, and the coupling vibration between wind, train, and the bridge can easily occur. The research results can provide references for the safe operation and maintenance of long-span bridges.

Funder

National Natural Science Foundation of China

Scientific Research Project of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference42 articles.

1. Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross wind;Guo;Wind Struct.,2015

2. Wind loads, wind induced vibrations and control of cables of cable-stayed bridges;Liu;Eng. Mech.,2015

3. Aerodynamic characteristics of vehicle-bridge system under crosswinds and effect of wind barriers;Zhang;J. China Railw. Soc.,2013

4. Analysis on wind-vehicle-bridge dynamic interaction for long-span railway suspension bridge;Zhang;China Railw. Sci.,2013

5. Vehicle-bridge interaction analysis under high-speed trains;Zhang;J. Sound Vib.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3