Weight Optimization of Discrete Truss Structures Using Quantum-Based HS Algorithm

Author:

Lee Seungjae1ORCID,Ha Junhong2ORCID,Shon Sudeok1ORCID,Lee Donwoo1ORCID

Affiliation:

1. School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea

2. School of Liberal Arts, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Cheonan 31253, Republic of Korea

Abstract

Recently, a new field that combines metaheuristic algorithms and quantum computing has been created and is being applied to optimization problems in various fields. However, the application of quantum computing-based metaheuristic algorithms to the optimization of structural engineering is insufficient. Therefore, in this paper, we tried to optimize the weight of the truss structure using the QbHS (quantum-based harmony search) algorithm, which combines quantum computing and conventional HS (harmony search) algorithms. First, the convergence performance according to the parameter change of the QbHS algorithm was compared. The parameters selected for the comparison of convergence performance are QHMS, QHMCR, QPAR, ϵ, and θr. The selected parameters were compared using six benchmark functions, and the range for deriving the optimal convergence performance was found. In addition, weight optimization was performed by applying it to a truss structure with a discrete cross-sectional area. The QbHS algorithm derived a lower weight than the QEA (quantum-inspired evolutionary algorithm) and confirmed that the convergence performance was better. A new algorithm that combines quantum computing and metaheuristic algorithms is required for application to various engineering problems, and this effort is essential for the expansion of future algorithm development.

Funder

Education and Research Promotion Program of KOREATECH

National Research Foundation of Korea

Ministry of Education

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference43 articles.

1. Morsch, O. (2008). Quantum Bits and Quantum Secrets: How Quantum Physics Is Revolutionizing Codes and Computers, John Wiley & Sons.

2. Jones, J.A. (2010). Quantum computing with NMR. arXiv.

3. Quantum computation;Berthiaume;Complex. Theory Retrosp. II,1997

4. Shor, P.W. (1994, January 20–22). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA.

5. Realization of a scalable Shor algorithm;Monz;Science,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3