Performance of Rubberized Concrete and the Effect of Temperature and Stainless Steel Fibers

Author:

El-Zohairy AymanORCID,Sanchez Matthew,Abediniangerabi BahramORCID,Moler Perry

Abstract

Rubberized concrete is widely used in construction by utilizing the advantages of partially replacing fine or coarse aggregate with rubber to enhance several properties of concrete and provide an environmentally friendly solution. This paper experimentally explores the influence of utilizing crumb rubber (CR) as an alternate coarse aggregate in concrete. Concrete specimens were prepared with different percentages of rubber (0%, 5%, 10%, 15%, and 20%). Additionally, other parameters, such as freezing–thawing cycles, temperature, and stainless steel fibers (SSFs), were investigated. The workability of fresh concrete and the compression properties of hardened concrete were examined. Reductions in the mechanical properties of rubberized concrete were obtained. The compressive strength reductions ranged between 13% and 50%, based on the percentage of CR in the concrete mix. However, a lesser unit weight and higher toughness were obtained relative to conventional concrete. The average unit weight decreased by 1.3%, 2.5%, 3.4%, and 5.7% of the control mixture when 5%, 10%, 15%, and 20% of the CR were incorporated into the concrete mixtures, respectively. Regression models to predict the compressive strength and unit weight of concrete with CR were developed. In addition, a life cycle cost analysis (LCCA) to identify and quantify the possible benefits of using CR in concrete mixes was carried out. Using rubberized concrete mixtures for thin whitetopping offered a slightly lower net present value compared to the ordinary concrete mix.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference49 articles.

1. Lewis, G. (2016). “Impacts & Results In your Region”, Regional Solid Waste Grants Program Funding Report Fiscal Years 2014/2015, Texas Association of Regional Councils.

2. Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes;Mhaya;Constr. Build. Mater.,2020

3. Comparative assessment of various gasification fuels with waste tires for hydrogen production;Hasan;Int. J. Hydrog. Energy,2019

4. Prediction of the dynamic properties in rubberized concrete;Habib;Comput. Concr.,2021

5. Properties of concrete with tire-derived aggregate partially replacing coarse aggregates;Siringi;Sci. World J.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3