Axial Compression Performance of Precast Circular Semi-Continuous Concrete-Filled Steel Tube Columns: Finite Element Analysis and Theoretical Modeling

Author:

Cao BingORCID,Xie Mingming,Huang Bo,Hu Gaoxing,Wang Jiawei

Abstract

A new finite element (FE) model was constructed with ABAQUS, and the applicability of the model was verified by the coincidence with typical damage modes and load-compression curves in the tests, and the axial compression performance of the precast circular semi-continuous concrete-filled steel tube (PCSCFST) columns was investigated. The effects of diameter-thickness ratio, slenderness ratio, yield strength, etc. on the axial compression performance of the PCSCFST columns were investigated by parametric analysis. The changes in slenderness ratio, yield strength and diameter-thickness ratio of the upper and lower steel tubes have obvious effects on the bearing capacity of the specimen, while the changes in bolt diameter and diameter-thickness ratio of the outer steel tube have little effects on the bearing capacity. In particular, the diameter ratio of bolt to steel tube (d/D) increases to 1/10, the bearing capacity increases slightly, the ratio (d/D) continues to increase until the bearing capacity decreases slightly, and the bearing capacity appears to increase significantly after the ratio (d/D) reaches 1/7; the yield strength ratio of bolt to upper and lower steel tube (fyb/fy1) increases from 1 to 2, the bearing capacity decreases slightly, and the bearing capacity increases significantly when the ratio (fyb/fy1) reaches about 2. After that, the change is minimal. In addition, a theoretical model was developed to predict the ultimate bearing capacity of the PCSCFST columns, and a close correlation was found between the FE simulation results and the theoretical model. The mean ratio of the FE ultimate load Nu,FE to the predicted ultimate load Nu,pre was 1.006 with a standard deviation of 0.0389.

Funder

Anhui Polytechnic University Talent Launch Fund Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3