Hybrid AHP-Fuzzy TOPSIS Approach for Selecting Deep Excavation Support System

Author:

Issa UsamaORCID,Saeed FamORCID,Miky YehiaORCID,Alqurashi MuwaffaqORCID,Osman Emad

Abstract

This paper introduces and further applies an approach to support the decision makers in construction projects differentiating among a variety of deep excavation supporting systems (DESSs). These kinds of problems include dealing with uncertainty in data, multi-criteria affecting the decision, and multi-alternatives to select one from them. The proposed approach combines the analytic hierarchy process (AHP) with the fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS) in a multicriteria decision-making (MCDM) model. The MCDM model emphasize the ability to combine expert knowledge, cost calculations, and laboratory test results for soil properties to achieve the scope. The model proved it had a superior ability to deal with the complexity and vague data that are related to construction projects. Furthermore, it was applied to a real case study for a governmental housing project in Egypt. Secant pile walls, sheet pile walls, and soldier piles and lagging are selected and studied as being the most common DESSs and as they satisfy the project requirements. The model utilized four criteria and fourteen comparing factors, including site characteristics, safety, cost, and environmental impacts. Based on the results of the model application on the investigated case study, a decision was reached that using secant piles as a supporting system in this project is mostly preferred. Furthermore, sheet pile wall, and soldier piles and lagging, come next in the ranking order. A sensitivity analysis is carried out to investigate how sensitive the results are to the criteria weights. In addition, the paper discusses in detail the reasons and factors which affect and control the decision-making process.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference38 articles.

1. Sustainability assessment of trenches including the new eco-trench: A multi-criteria decision-making tool

2. Excavation Support Systems for Construction Operations;Chini;J. Constr. Educ.,1997

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3