Advanced Energy Performance Modelling: Case Study of an Engineering and Technology Precinct

Author:

Tahmasebinia Faham1ORCID,Lin Lin1,Wu Shuo1,Kang Yifan1,Sepesgozar Samad2ORCID

Affiliation:

1. School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia

2. School of Built Environment, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

The global demand for energy is significantly impacted by the consumption patterns within the building sector. As such, the importance of energy simulation and prediction is growing exponentially. This research leverages Building Information Modelling (BIM) methodologies, creating a synergy between traditional software methods and algorithm-driven approaches for comprehensive energy analysis. The study also proposes a method for monitoring select energy management factors, a step that could potentially pave the way for the integration of digital twins in energy management systems. The research is grounded in a case study of a newly constructed educational building in New South Wales, Australia. The digital physical model of the building was created using Autodesk Revit, a conventional software for BIM methodology. EnergyPlus, facilitated by OpenStudio, was employed for the traditional software-based energy analysis. The energy analysis output was then used to develop preliminary algorithm models using regression strategies in Python. In this regression analysis, the temperature and relative humidity of each energy unit were used as independent variables, with their energy consumption being the dependent variable. The sigmoid algorithm model, known for its accuracy and interpretability, was employed for advanced energy simulation. This was combined with sensor data for real-time energy prediction. A basic digital twin (DT) example was created to simulate the dynamic control of air conditioning and lighting, showcasing the adaptability and effectiveness of the system. The study also explores the potential of machine learning, specifically reinforcement learning, in optimizing energy management in response to environmental changes and usage conditions. Despite the current limitations, the study identifies potential future research directions. These include enhancing model accuracy and developing complex algorithms to boost energy efficiency and reduce costs.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3