Probabilistic Fatigue Crack Growth Prediction for Pipelines with Initial Flaws

Author:

Choi Youngjin1ORCID,Lee Seung-Jung2

Affiliation:

1. Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea

2. Department of Civil and Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea

Abstract

This paper presents a probabilistic method to predict fatigue crack growth for surface flaws in pipelines using a particle filtering method based on Bayes theorem. The random response of the fatigue behavior is updated continuously as measured data are accumulated by the particle filtering method. Fatigue crack growth is then predicted through an iterative process in which particles with a high probability are reproduced more during the update process, and particles with a lower probability are removed through a resampling procedure. The effectiveness of the particle filtering method was confirmed by controlling the depth and length direction of the cracks in the pipeline and predicting crack growth in one- and two-dimensional cases. In addition, the fatigue crack growth and remaining service life with a 90% confidence interval were predicted based on the findings of previous studies, and the relationship between the fatigue crack growth rate and the crack size was explained through the Paris’ law, which represents fatigue crack growth. Finally, the applicability of the particle filtering method under different diameters, aspect ratios, and materials was investigated by considering the negative correlation between the Paris’ law parameters.

Funder

Incheon National University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3