CFD Simulation Supported Development of Wind Catcher Shape Topology in a Passive Air Conduction System (PACS)

Author:

Katona Ádám LászlóORCID,Háber István Ervin,Kistelegdi István

Abstract

New studies and reports are published on a daily basis about the dangers of climate change and its main causes: humanity’s constantly growing population, the built environment and resource consumption. The built environment is responsible for approx. 40% of the total energy consumption, and a significant part comes from maintaining an appropriate indoor comfort environment by heating ventilation and air conditioning. Though contemporary studies have achieved a wide knowledge about natural ventilation and passive air conducting systems (PACS) and their applicability, further investigations are necessary to deepen the aerodynamic topology of air conducting building structures’ shape properties. Hence, in our current research we conducted a series of tests applying different wind catcher geometries. The methodology of this work is based on the authors’ previous work, where passive air conduction systems were compared with different airflow directions via computational fluid dynamic simulations (CFD). After finding the better performing PACS (a downdraught system), this research evaluates whether further improvements in ventilation efficiency are possible due to the aerodynamic shaping of the roof integrated inlet structures. Four different wind catcher geometries were examined to determine the most advantageous dimensional settings in the natural ventilation system’s given boundaries. After multiple series of basic and developed calculation runs, diverse shape designs of the passive air conduction inlet (PACI) were examined, including wind deflector geometries. The initial reference wind catcher’s air change rate was increased by approx. 11%. The results deliver the potential measure of improvements achievable in the aerodynamic shape design of structures under identic conditions of the same building domain. As a consequence, more sophisticated natural ventilation structural solutions will be possible in more operation cost- and performance-effective ways.

Funder

National Excellence Program of the Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference51 articles.

1. Constraining human contributions to observed warming since the pre-industrial period;Gillett;Nat. Clim. Chang.,2021

2. Framework Convention on Climate Change. Proceedings of the Conference of the Parties on Its Twenty-First Session.

3. A Roadmap for Moving to a Competitive Low Carbon Economy in 2050, 2011.

4. GHG emission scenarios in Asia and the world: The key technologies for significant reduction;Akashi;Energy Econ.,2012

5. A review on buildings energy consumption information;Pérez-Lombard;Energy Build.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3