Mixture Optimization of Sustainable Concrete with Silica Fume Considering CO2 Emissions and Cost

Author:

Wang Yi-Sheng,Cho Hyeong-Kyu,Wang Xiao-YongORCID

Abstract

This research presents a framework for the mixture design of sustainable SF-modified concrete. The design strength at 28 days was scaled to different values (e.g., 30, 40, 50, and 60 MPa). CO2 emissions and cost were chosen as the design variables to optimize. Strength, slump, and carbonation durability with global warming were applied as constraints of optimal design. The analysis revealed that, for low-CO2 concrete, when the design strength was 30 or 40 MPa, to fulfill the requirement of carbonation, the actual concrete strength ought to be 45.39 MPa, which was much greater than the design strength. Carbonation did not affect the mixtures scaled to a high design strength (50 and 60 MPa). The SF/binder ratio was maximum for low-CO2 concrete. Furthermore, for low-total-cost concrete, when the design strength was 30 MPa, the actual strength was 31.28 MPa after considering carbonation. Moreover, when considering global warming, the actual strength should be 33.44 MPa. The SF/binder ratio was minimum for low-cost concrete. Lastly, for low-material-cost concrete, the design was equivalent to the low-total-cost concrete, along with much lower CO2 emissions. In summary, the suggested technique is valuable for the design of sustainable SF-modified concrete with low CO2 and low cost.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference36 articles.

1. Structural Assessment of Reinforced Concrete Beams Incorporating Waste Plastic Straws;Khatib;Environments,2020

2. A Study on Efficiency Factor of Silica Fume;Sulthan;Int. J. Mod. Trends Sci. Technol.,2018

3. Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume;Ahmad;Adv. Concr. Constr.,2019

4. Mixture design and early age investigations of more sustainable UHPC;Abdulkareem;Constr. Build. Mater.,2018

5. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete;Wang;Compos. Part B Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3