Abstract
The supply chain for prefabricated buildings (PB) is vulnerable to the operation failure of node enterprises, with frequent damage occurring. Therefore, it is vital to establish an evaluation model of supply chain resilience (SCRE) to improve the ability to resist unanticipated risks. However, existing research falls short of explaining the hierarchy of the influential components. To fill this gap, this paper established an element-based system of PBSCRE affecting factors. The DEMATEL-ISM method, which combines Pythagorean fuzzy sets, was utilized to analyze the factors. The effectiveness of this framework was then verified via a case study. The results showed the following: the top six elements in terms of centrality were risk management level, inventory management, emergency response plan, visibility, environmental risk, and information technology level; all factors were divided into six levels: (1) factors in level 1 are surface direct influence factors, (2) factors in levels 2 to 5 are intermediate transfer factors, and (3) factors in level 6 are deep root factors. There are 4 root factors, namely, supplier level, environmental risk, information technology level, and visibility. The results indicate that the proposed model will assist managers in identifying critical aspects and achieving sustainable management.
Funder
National Key R&D projects
Science and Technology Project of Wuhan Urban and Rural Construction Bureau, China
Research on theory and application of prefabricated building construction management
Wuhan Mo Dou Construction Consulting Co., Ltd.
Preliminary Study on the Preparation of the 14th Five-Year Plan for Housing and Urban–Rural Development in Hubei Province
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献