Experimental Research on the Compression Property of Geopolymer Concrete with Molybdenum Tailings as a Building Material

Author:

Sun MingORCID,Fu Yin,Wang Weixin,Yang Youzhi,Wang An

Abstract

This paper experimentally studied the effects of different molybdenum tailings (MoT) content, standard curing and 60 °C water curing conditions on the compressive strength of fly ash-based geopolymers at different ages. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) and Fourier-transform infrared spectroscopy (FTIR) were applied to investigate the effect of the content of MoT and different curing conditions on the reaction products, microstructure and chemical composition of fly ash-based geopolymers. The results show that MoT content and curing conditions have synergistic effects on the compressive strength of fly ash-based geopolymers. For standard curing, the increase in MoT content is detrimental to the development of compressive strength, and an obvious weak interfacial transition zone between MoT and the gel product is observed in specimen containing 40 wt% MoT; meanwhile, under water curing conditions, the compressive strength of geopolymers first increases and then decreases with the increase in MoT, and the 28-day compressive strength can reach 90.3 MPa when the content of MoT is 10 wt%. The SEM results show that the curing conditions have a great influence on the microstructure of the geopolymer matrix, and the microstructure of the specimens under the water curing conditions is smoother and denser, with fewer pores. EDS analyses show that the gel product constituting the geopolymer matrix is N(C)-A-S-H gel; MoT can participate in the reaction, and the mass ratio of Ca/(Si + Al) of N(C)-A-S-H gel increases with the increase in MoT, resulting in a decrease in compressive strength. In addition, the results of the FTIR confirm that water curing can increase the degree of crosslinks in the gel phase.

Funder

Shenzhen High-level Talents Research Start-up Fund

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference30 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3