Author:
Cheng Zhan,Li Junhua,Wu Chuangchuang,Zhang Tianyi,Du Guofeng
Abstract
To study the axial compression performance of a steel-reinforced ultra-high-performance concrete-filled square stainless-steel tube (SR-UHPCFSSST), eight specimens were designed with different length-to-diameter ratios and skeleton contents, and axial compression tests and numerical simulations were performed. Damage pattern, ultimate load capacity, and load–displacement curve data of the specimens were obtained. Finite element analysis was performed using ABAQUS software for parameter expansion. The damage mechanisms of the specimens and the influences of various parameters, such as the length-to-diameter ratio, skeleton content, diameter-to-thickness ratio, and concrete strength, on the damage processes and ultimate bearing capacities of the specimens were studied. The results showed that among the components of the test piece under the same axial load, the stress of the built-in steel skeleton was the first to approach its yield stress, and the steel pipe was the first to produce a bulging deformation. The ultimate bearing capacities of the specimens increased with the increase in the skeleton content and concrete strength and decreased with the increase in the length-to-diameter and diameter-to-thickness ratios. Based on the test and numerical simulation results, this paper puts forward a calculation formula of the axial compression bearing capacity of a square-stainless-steel-tube ultra-high-performance-concrete middle-length column with a steel skeleton, which provides a reference for engineering design and for compiling relevant codes.
Funder
National Natural Science Foundation of China
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献