Optimizing Window Configuration Counterbalancing Energy Saving and Indoor Visual Comfort for Sydney Dwellings

Author:

Sorooshnia Ehsan,Rashidi MariaORCID,Rahnamayiezekavat Payam,Samali Bijan

Abstract

Building penetrations are the most-potent elements providing daylight and moderating the lighting energy consumption and affecting indoor comfort and consequent energy usage. In a semi-tropical climate with a green environment such as Sydney, there is a radical demand to extend windows providing views. This research aims to optimize sunlight admission and maintain indoor comfort while minimizing energy consumption. The method for investigation is to simulate a multiobjective optimization using NSGA-II considering visual and thermal comfort along with energy usage and view of the outside. A combination of human and machine assessments responding to manual and microcontroller-operated indoor validating simulation improves the generalizability. The solutions were assessed for local codes compliance and double-checked against statistical sky conditions. Regarding north, a window-to-wall ratio of 10.7–20% delivers an optimum daylight metric, yielding a 12.16% decrease in energy use intensity. For an east-facing window, altering 26.4% of WWR decreases 2% in lighting energy and a provides a drastic change in visual comfort. Regarding west, changing WWR by about 51% brings about a 50% saving in lighting but no change in other energy loads. Regarding south, when window length is limited to 39% envelope width, it delivers the optimum energy consumption. This study covers visual and thermal comfort together with energy usage and view of the outside, which has not been investigated for southern hemisphere dwellings. A combined simulation and field measurement of human and machine assessment justifies the solutions.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3