A New Drive-by Method for Bridge Damage Inspection Based on Characteristic Wavelet Coefficient

Author:

Zhang Tingpeng1ORCID,Zhu Jin1,Xiong Ziluo12ORCID,Zheng Kaifeng1,Wu Mengxue3

Affiliation:

1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA

3. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China

Abstract

The drive-by method has become a popular indirect approach for bridge damage inspection (BDI) because of its simplicity in deployment by evaluating the bridge health status solely via the vehicle dynamic response. Derived from the vehicle dynamic response, the recent proposed contact-point response involves no vibration signal with the vehicle frequency, bearing great potential for drive-by BDI. However, an appropriate methodology for the application of contact-point response in drive-by BDI remains lacking. The present study proposes a novel drive-by method, in which a new damage factor index, i.e., the characteristic wavelet coefficient (CWC), is established for bridge damage identification in an efficient and accurate manner. The CWC is obtained by analyzing the contact-point response via the continuous wavelet transform (CWT) and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) techniques. CEEMDAN is introduced to overcome the issue of modal aliasing and pseudo-frequency. First, the general framework of the proposed drive-by BDI method is introduced. Then, a demonstration case study is carried out to examine the effectiveness of the proposed method. Subsequently, a parametric study is carried out to explore the effects of several parameters on the performance of BDI including the scale factor, vehicle speed, environmental noise, and boundary effect. The results indicate that the proposed drive-by BDI method can better eliminate the mode mixing and pseudo-frequency problems during the extraction of the CWC, compared with the traditional ensemble empirical mode decomposition method. The extracted CWC curve is smooth, convenient for damage inspection, and has strong anti-noise performance. After adding white noise with a signal-to-noise ratio of 20, a bridge girder with a damage severity of 20% can be identified successfully. In addition, the selection of the scale factor is critical for bridge damage inspection based on the extracted CWC. The effective scale factor of the CWC extracted using the proposed method has a wide range, which improves the inspection efficiency. Finally, a low vehicle speed is beneficial to alleviate the adverse effect of the boundary effect on the damage inspection of bridge girder ends.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3