Affiliation:
1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
2. Zhejiang Mairui Robot Co., Ltd., Hangzhou 311200, China
Abstract
Compared with traditional timber boards, timber–concrete composite (TCC) boards demonstrate a higher rigidity and bearing capacity, improved vibration, and better behavior under seismic conditions. However, they become charred when exposed to fire due the combustibility of timber, and the fire safety of this material is considered essential. In this research, 60 min fire exposure tests and residual load-carrying capacity tests following fire exposure were carried out on three full-scale composite boards, two of which were covered with an innovative form of gypsum board protection. The effect of the innovative protection on the temperature field and fire resistance of the TCC boards was studied in detail. The test results indicate that the fire resistance of the TCC boards was effectively improved by using the innovative protection. If the coverage ratio is identical, a wider single gypsum board can demonstrate a slight increase in residual carrying capacity. Finite element models of TCC boards were established to investigate the temperature field during fire exposure and the residual load-carrying capacity of the TCC boards after fire exposure, demonstrating high applicability and accuracy. The conclusions in this paper can provide reference for fire design in engineering.
Funder
the General Project of National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献