A Case Study on Multi-Objective Optimization Design of College Teaching Building Atrium in Cold Regions Based on Passive Concept

Author:

Chen Zhengshu1,Cui Yanqiu1,Zheng Haichao1,Wei Ruihan1,Zhao Shuo1

Affiliation:

1. College of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China

Abstract

The atrium space represents one of the most energy-intensive areas within buildings. This is especially evident in college teaching buildings, where the inclusion of atriums often leads to increased energy consumption, primarily due to enhancements in lighting and thermal comfort. To address this issue, this study investigates atriums in cold regions within college teaching buildings and establishes four distinct atrium models for such buildings through typological abstraction and evolution. This study utilizes the Grasshopper (Ladybug Tools; developed by Robert McNeel & Assoc, Inc. in the United States.) parametric performance simulation platform to simulate daylight comfort and energy consumption within the atriums. Range analysis is subsequently applied to assess the impact of variables on energy consumption, and variables with the least influence are eliminated. Subsequently, the Octopus plug-in is employed to conduct multi-objective optimization for the four atrium types, resulting in the attainment of a Pareto-optimized solution set. Following optimization, the energy efficiency rates for the four atrium types are determined as 10.3%, 17.6%, 37.2%, and 30.5%, respectively, while the daylight comfort rates experience enhancements of 4.4%, 10.4%, 44.7%, and 34%, respectively. This study provides designers with a reference for optimizing design parameters during the early stages.

Funder

Key Research and Development Projects of the Ministry of Housing and Urban-Rural Development of the People’s Republic of China

Research and Development Projects of the Housing and Urban-Rural Development Department of Shandong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3