Experimental Study on the Bonding Performance between Shaped Steel and High-Strength Concrete

Author:

Tao Qinglin1ORCID,Pei Weiping1,Zhang Hao1,Hu Yi2,Qian Yuandi2,Wang Yingtong12,Kong Zhengyi13ORCID

Affiliation:

1. Department of Civil Engineering, Anhui University of Technology, Ma’anshan 243032, China

2. Technology Center, China MCC17 Group Co., Ltd., Ma’anshan 243000, China

3. Institute for Sustainable Built Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

The integration of steel fibers into high-strength concrete (HSC) offers a solution to address the brittleness and limited ductility typically associated with conventional HSC structures. To investigate the bonding properties between shaped steel and high-strength concrete with steel fiber (SFRC), thirteen tests of the shaped steel/SFRC specimens are conducted to explore the effects of various factors such as steel fiber volume ratio, concrete strength grade, reinforcement ratio, steel embedment depth, and cover thickness on bond–slip behavior. Three distinct failure modes, such as pushout failure, bond splitting, and yielding failure of steel, are identified during the pushout tests. Three different types of bond strength, such as the initial bond strength, the ultimate bond strength, and the residual bond strength, are observed from the load–slip curves between the shaped steel and concrete. By incorporating nonlinear spring elements, a numerical model for accurately simulating the bond performance between the shaped steel and SFRC specimens is developed. The bond strength between the shaped steel and concrete increase as the concrete strength, cover thickness, steel fiber volume ratio, and stirrup ratio increase, while it decreases as the steel embedment depth increases. A model for the bond strength between shaped steel and SFRC is developed, and it agrees well with the test data.

Funder

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3