Bond Behavior and Failure Mechanisms of the Interface between Engineered Cementitious Composites and Shaped Steel

Author:

Pan Jiaojiao12ORCID,Huang Zhenbin12,Lu Tingting12,Deng Mingke3

Affiliation:

1. School of Civil Engineering, Xijing University, Xi’an 710123, China

2. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xi’an 710123, China

3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Due to their excellent ductility and crack-control ability, engineered cementitious composites (ECCs) combined with shaped steel can produce steel-reinforced engineering cementitious composite (SRECC) structures which exhibit significant advantages in prefabricated buildings. The interface bond behavior is the base for the cooperative working performance of the shaped steel and ECC. This study included push-out tests of one ordinary concrete control specimen and ten ECC specimens. The various parameters were the ECC compressive strength, fiber volume content, cover thickness, and the embedded length of shaped steel. The bond stress–slip curves at the loading and free end were obtained, and the effects of various parameters on the characteristic points of curves were analyzed. The results indicated that the ordinary concrete specimen failed in brittle splitting, with the cracks completely penetrating the surface of the specimen. Due to the fiber-bridging effect in ECCs effectively preventing the development and extension of cracks, the shaped steel at the free end was obviously pushed out, and the surrounding matrix maintained good integrity after testing finished. For ECC specimens, bond or splitting-bond failure occurred, exhibiting outstanding ductility. Compared with the ordinary concrete specimen, the standard ultimate and residual bond strength of ECC specimens improved by 37.9% and 27.4%, respectively. Besides the increase in ECC compressive strength, the fiber volume content and cover thickness had a significant positive influence on the ultimate and residual bond strength, whereas the effect of the embedded length was the opposite. Finally, the calculation equations of characteristic bond strength were proposed, and the calculated values matched well with the experimental values.

Funder

Scientific Research Program Funded by Education Department of Shaanxi Provincial Government

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3