Mechanical Performance Optimization and Microstructural Mechanism Study of Alkali-Activated Steel Slag–Slag Cementitious Materials

Author:

Wang Mengqi1,Xu Jian12,Zhang Xuejing3,Tan Longzhen1,Mei Yuan12

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

3. Shaanxi Building Materials Technology Group Co., Ltd., Xi’an 710018, China

Abstract

The optimal proportion of alkali-activated steel slag–slag cementitious materials is investigated by considering the combined effects of steel slag content, alkali content, water glass modulus, and water–binder ratio using the Box–Behnken design in response surface methodology. Qualitative and semi-quantitative analyses of X-ray diffraction (XRD) patterns and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) images are conducted. The microstructural mechanism is elucidated based on the chemical composition, surface morphology, and microscale pore (crack) structures of the samples. A microreaction model for the alkali-activated steel slag and slag is proposed. The optimal composition for alkali-activated steel slag–slag cementitious materials is as follows: steel slag content, 38.60%; alkali content, 6.35%; water glass modulus, 1.23; and water–binder ratio, 0.48. The strength values predicted by the response surface model are p1d = 32.66 MPa, p7d = 50.46 MPa, and p28d = 56.87 MPa. XRD analysis confirms that the compressive strength of the sample is not only influenced by the amount of gel formed, but also, to a certain extent, by the CaCO3 crystals present in the steel slag, which act as nucleation sites. The SEM-EDS results confirm that the gel phase within the system comprises a hydrated calcium silicate gel formed through the reaction of volcanic ash and geopolymer gel formed through geo-polymerization. Analysis of the pore (crack) structure reveals that the compressive strength of the specimens is primarily influenced by porosity, with a secondary influence of the pore fractal dimension.

Funder

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3