Fragility Assessment of a Long-Unit Prestressed Concrete Composite Continuous Girder Bridge with Corrugated Steel Webs Subjected to Near-Fault Pulse-like Ground Motions Considering Spatial Variability Effects

Author:

Han Mingcheng1,Dong Yidian2,Wang Tong2,Du Mingqu3,Gao Qingfei2ORCID

Affiliation:

1. CCCC First Highway Consultants Co., Ltd., Xi’an 710068, China

2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

3. Road & Bridge International Co., Ltd., Beijing 100027, China

Abstract

Prestressed concrete composite girder bridges with corrugated steel webs (PCCGBCSWs) are extensively employed in bridge construction because of their low dead weight, fast construction, and high prestressing efficiency. Moreover, PCCGBCSWs will experience deformation and failure of the corrugated steel webs, including steel fatigue and fracture, during earthquakes. These changes will introduce safety hazards, which can be addressed via bridge disaster prevention and mitigation. Because near-fault pulse-like ground motions (NFPLGMs) have high peak accelerations, these motions can easily cause damage to a bridge. Therefore, in this study, a seismic fragility assessment is performed for long-unit PCCGBCSWs subjected to NFPLGMs considering spatial variability effects, and a sensitivity evaluation of the seismic fragility is conducted considering girder type, bearing type, ground motion type, and apparent wave velocity to offer a point of reference for seismic design. The results show that PCCGBCSWs are less vulnerable than concrete bridges. The shock absorption effect of the friction pendulum bearing is better than that of the viscous damper. The impact of NFPLGMs on bridges is greater than that of near-fault non-pulse-like ground motions (NFNPLMs) and far-fault ground motions (FFGMs). The seismic fragility under nonuniform excitation conditions is greater than that under uniform excitation conditions, showing an increasing trend with decreasing apparent wave velocity.

Funder

Key Research and Development Program of Heilongjiang Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3