Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary M-E Design Analysis

Author:

Jin DongzhaoORCID,Ge DongdongORCID,Zhou Xiaodong,You ZhanpingORCID

Abstract

Scrap tire rubber and nylon fiber are waste materials that could potentially be recycled and used to improve the mechanical properties of asphalt pavement. The objective of this research was to investigate the properties of scrap tire rubber and nylon fiber (R-F) modified warm mix asphalt mixture (WMA). The high-temperature performance was estimated by the Hamburg wheel-tracking testing (HWTT) device. The low-temperature cracking performance was evaluated by the disk-shaped compact tension (DCT) test and the indirect tensile strength (IDT) test. The stress and strain relationship was assessed by the dynamic modulus test at various temperatures and frequencies. The extracted asphalt binder was evaluated by the dynamic shear rheometer (DSR). Pavement distresses were predicted by pavement mechanistic-empirical (M-E) analysis. The test results showed that: (1) The R-F modified WMA had better high-temperature rutting performance. The dynamic modulus of conventional hot mix asphalt mixture (HMA) was 21.8%~103% lower than R-F modified WMA at high temperatures. The wheel passes and stripping point of R-F modified WMA were 2.17 and 5.8 times higher than those of conventional HMA, respectively. Moreover, the R-F modified warm mix asphalt had a higher rutting index than the original asphalt. (2) R-F modified WMA had better cracking resistance at a low temperature. The failure energy of the R-F modified WMA was 24.3% higher than the conventional HMA, and the fracture energy of the R-F modified WMA was 7.7% higher than the conventional HMA. (3) The pavement distress prediction results showed the same trend compared with the laboratory testing performance in that the R-F modified WMA helped to improve the IRI, AC cracking, and rutting performance compared with the conventional HMA. In summary, R-F modified WMA can be applied in pavement construction.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3