Experimental Studies on Seismic Performance of UHPSFRC-Filled Square Steel Tubular Columns

Author:

Luo Yunbiao,Zhao Yucai,Chen Yuebo,Lin Xuchuan,Yan Jiabao

Abstract

The excellent seismic performance of concrete-filled steel tube (CFST) structures has been widely recognized, but there is a paucity of research on composite columns using UHPC with added steel fibers. This paper presents the experimental studies and numerical analyses with OpenSees on seismic performance of ultra-high performance steel fiber-reinforced concrete (UHPSFRC)-filled square steel tubular columns. Five half-scaled specimens of UHPSFRC-filled square steel tubular columns were tested under a combination of constant axial compression and cyclic horizontal load, with parameters of width-to-thickness ratio (28.5, 19.9 and 14.7) and axial compression ratio (0.133, 0.266 and 0.399) of the steel tube. With the decrease in width-to-thickness ratio, the maximum bending moment capacity increased by 33.5% and 15.3%, and the energy dissipation capacity and ductility increased, while the strength degradation and stiffness degradation reduced. With the increased axial compression ratio, the loading capacity increased from 55.3 to 70.2 kNm (26.94%). The results indicate that UHPSFRC-filled square steel tubular columns improve seismic performance by decreasing the axial compression ratio and by increasing the width-to-thickness ratio. When the width-to-thickness ratio was reduced, the steel tubular was able to provide higher lateral restraint to the internal UHPC; thus, seismic performance was improved. With the increase in the axial compression ratio, the second-order damage effect of the members was greatly affected, and it accelerated the plastic damage. A modified UHPSFRC model considering steel tubular constraints was adopted, and the nonlinear dynamic modeling of the column response using OpenSees led to good agreement with the tested response of the column under cyclic motion. The theoretical calculation model can better predict the bending capacity of the UHPSFRC-filled square steel tubular columns. However, the calculation formulas of initial stiffness and yield bending moment need further research.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3