Experimental Study on Dynamic Characteristics of Saturated Soft Clay with Sand Interlayer under Unidirectional and Bidirectional Vibration

Author:

Wang Sui123,Cai Yuanqiang1,Zhang Liyong2,Pan Yongjian2,Chen Bin3,Zhao Peng3,Fang Yuanming3

Affiliation:

1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. Zhejiang Engineering Survey and Design Institute Group Co., Ltd., Ningbo 315012, China

3. School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

Abstract

The marine and alluvial plains along the southeastern coast of China are widely distributed in sandy formations, including smaller sand lenses and interlayers. The interlayers of sand have a significant impact on the mechanical properties of soft clay. In this paper, a large number of undrained unidirectional and bidirectional cyclic loading tests for soft clay with sand interlayers were carried out by a dynamic triaxial test system. Test results show that, under unidirectional and bidirectional cyclic vibration, the area of the hysteresis loop decreases and the slope of the connecting line at both ends of the hysteresis loop increases with the increasing of frequency. For the same vibration frequency, the area of the bidirectional vibration hysteresis loop and the slope of the connecting line at both ends are smaller than that of the unidirectional cyclic vibration. Under the same dynamic stress ratio, cumulative axial deformation caused by unidirectional and bidirectional vibration increases with the increasing frequency. Under unidirectional vibration, dynamic elastic modulus decreases at first, and then increases with the increasing frequency. For the same frequency, dynamic elastic modulus of the sample increases with the increase in cycles. Due to the effect of radial cyclic stress, the curves of dynamic elastic modulus and damping ratio with frequency under bidirectional vibration are opposite to those under unidirectional vibration.

Funder

Systematic Project of Key Laboratory of New Technology for Construction of Cities in Mountain Area

Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety

Initial Scientific Research Fund of Young Teachers in Ningbo University of technology

Ningbo Public Welfare Science and Technology Planning Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3