Two Novel Vlasov Models for Bending Analysis of Finite-Length Beams Embedded in Elastic Foundations

Author:

Yue FengORCID,Wu Ziyan,Fan Zhiqiang,Li Haokai

Abstract

The issue of soil–structure interaction (SSI) is essentially to analyze the influence of complex media on the mechanical behavior of supported structures. With the development of underground space, geological structures and space constraints put forward higher requirements for foundations and buildings. In this paper, the effects of soil heterogeneity and embedment depth on the bending of finite-length beams embedded in two novel Vlasov elastic foundations are investigated. Firstly, the constitutive relations of subsoil are simulated by Gibson and transversely isotropic soils, and the type of elastic foundation is described by the modified Vlasov model. Then, based on variational principles, the governing differential equations for the deformation and attenuation parameters of beams embedded in elastic foundations are derived by taking the variation of the minimum potential energy of the system, and the characteristic coefficient related to the embedment depth is introduced. Finally, the mechanical performance of the beam and foundation is obtained by an iterative technique and the Fourier series method, and an extensive parametric study is performed to examine influence of some basic parameters on the deformation and internal forces of the system. The results show that the mathematical expressions of two refined elastic models are in good agreement with those of the traditional Vlasov foundation after degradation. The iterative technique based on the principles of solid mechanics can be employed to obtain more reliable model parameters. More importantly, with the increase in the embedment depth, the mechanical responses of the beam and subgrade forces decrease. The main reason is that the restraint effect of the soil media around structures, which leads to the reduction of the characteristic coefficient affecting the displacement of beams. Moreover, the heterogeneity of soil, including Gibson characteristics and transverse isotropy, should be considered according to specific working conditions in civil engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3