Research on Optimal Placement of Actuators of High-Rise Buildings Considering the Influence of Seismic Excitation on Structural Modes

Author:

Zhang JiaruiORCID,Zhu Yaoyang,Li ZhaoORCID,Tu Jianwei

Abstract

Presently, most of the common placement methods of actuators are based on the structural response and system energy to select the optimal locations. In these methods, the contribution of controllability and the energy of seismic excitations to each mode of the structure are not considered, and a large number of cases need to be calculated. To solve this problem, the Clough–Penzien spectral model is combined with the Luenberger observable normal form of the system to calculate the energy of each state. The modal disturbance degree, considering modal energy and controllability, is defined by using the controllability gramian matrix and PBH system controllability index, and the modes are divided into the main disturbance modes (MDMs) and the secondary disturbance modes (SDMs). A novel optimal placement method of actuators based on modal controllability degree is proposed, which uses MDMs as the main control modes. The optimal placement of actuators and the vibration control simulation of a 20-story building model are carried out. The results show that the vibration reduction effect of the proposed placement method is significantly better than that of the method of uniformly distributed actuators (Uniform method) and the classical placement method of actuators based on the system controllability gramian matrix (Classical method).

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Hubei Province

Key Research Plan of Ministry of Science and Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3