Load Distribution Optimization of Steel Storage Rack Based on Genetic Algorithm

Author:

Deng TianyangORCID,Niu Yu,Yin LingfengORCID,Lin Zhiqiang,Li ZhanjieORCID

Abstract

The distribution of load has high uncertainty, which is the main cause of a rack structure’s instabilities. The objective of this study was to identify the most unfavorable and favorable load distributions on steel storage racks with and without bracings under seismic loading through a stochastic optimization—a genetic algorithm (GA). This paper begins with optimizing the most unfavorable and favorable load distributions on the steel storage racks with and without bracings using GA. Based on the optimization results, the failure position and seismic performance influencing factors, such as the load distributions on the racks and at hazardous positions, are then identified. In addition, it is demonstrated that the maximum stress ratio of the uprights under the most unfavorable load distribution is higher than that under the full-load normal design, and it is not the case that the higher the center of gravity the more dangerous the steel storage rack is, demonstrating that the load distribution pattern has a significant impact on the structural safety of steel storage racks. The statistics of the distributions of the load generated during the optimization of the GA and the contours of the probability distributions of the load are generated. Combining the probability distribution contours and the GA’s optimization findings, the “convex” distribution hazard model and the “concave” distribution safety model for a steel storage rack with bracings are identified. In addition, the features of the distribution hazard model and the load distribution safety model are also identified for steel storage racks without bracings.

Funder

National Natural Science Foundation of China

Central Government for Local Science and Technology Development of Tibetan Autonomous Region

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3