Abstract
The successful completion of reinforced concrete (RC) building construction projects depends, in part, on selecting the appropriate formwork system (FWS) since it may significantly affect the project’s cost, time, and quality performance factors. The selection of the FWS depends on a number of compromising and conflicting criteria, while several FWS alternatives may be available. Therefore, the FWS selection has mostly been treated as a multi-criteria-decision-making (MCDM) problem. Although various MCDM methods have been employed to address the FWS selection problem, none have considered the subjectivity and uncertainty arising from a group decision-making process. This study aims to fill this knowledge gap by proposing an integrated approach using recently developed MCDM methods with rough numbers. In the integrated approach, first, a decision-making team is formed to develop the decision hierarchy. Then, the rough analytic hierarchy process (R-AHP) is used to determine rough criteria weights, followed by the rough evaluation based on the distance from average solution (R-EDAS) method to rank the FWS alternatives. Finally, the results are compared using different rough MCDM methods to ensure the stability of the proposed approach. The proposed approach is applied to a real-life building construction project in Turkey to select the most appropriate FWS. The integrated approach was found to be effective, and it was recommended to be used for future FWS selection problems. The proposed integrated approach in this study may be used as a decision support tool for construction professionals and experts to select the FWS in building construction projects.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献