A Systematic Review of Climate Change Implications on Building Energy Consumption: Impacts and Adaptation Measures in Hot Urban Desert Climates

Author:

Kutty Najeeba Abdulla1,Barakat Dua1,Darsaleh Abeer Othman1,Kim Young Ki1

Affiliation:

1. Department of Architectural Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates

Abstract

The climate change–built environment nexus is complex and intertwined. Recognizing the rising air temperatures and solar radiations owing to climate-induced global warming, it is critical to manage the increased building energy and cooling loads in the Middle East Gulf states’ hot desert climates (Bwh). One of the top climate priorities is to promote climate resilience by reducing risks and enhancing adaptation options. This study aims to systematically review the existing literature to document building energy performances in and the associated adaptation measures of the Middle East Gulf states, regarding the implications of climate change. It is accomplished by answering the following questions: ‘How well do we understand the effects of climate change on building energy use in hot urban deserts?’ and ‘What are the most appropriate adaptation strategies to reduce energy use in hot urban deserts?’. Using the Preferred Reporting Items for Systematic review and Meta-Analysis protocols (PRISMA), 17 studies on the influence of present and future weather scenarios on building performance are examined, considering variations in typology, methods, and input variables. Finally, the paper identifies the preferred methods and input variables for modelling building energy performance under predicted climatic changes. Passive design considerations are considered highly effective in mitigating and adapting to climate change implications. Thermal insulation and efficient window glazing are identified as the best-performing strategies, while the use of solar Photovoltaic (PV) is considered efficient in meeting the primary energy demands. The study’s findings can assist planners and designers in projecting future climatic influences on the energy usage of existing buildings.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference76 articles.

1. IPCC (2014). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. in press.

3. Nakicenovic, N., Alcamo, J., Davis, G., Vries, B.D., Fenhann, J., Gaffin, S., Gregory, K., Gr�bler, A., Jung, T.Y., and Kram, T. (2023, December 08). IPCC: Special Report on Emissions Scenarios. Available online: https://www.grida.no/climate/ipcc/emission/index.htm.

4. Generalized residential building typology for urban climate change mitigation and adaptation strategies: The case of Hungary;Csoknyai;Energy Build.,2013

5. A review of climate change implications for built environment: Impacts, mitigation measures and associated challenges in developed and developing countries;Koc;J. Clean. Prod.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3