Planning Strategy for Urban Building Energy Conservation Supported by Agent-Based Modeling

Author:

Song ShiyiORCID,Leng Hong,Guo Ran

Abstract

As a systematic, preventive, and structural adjustment method of improving building energy conservation and carbon emission reduction, urban planning has received extensive attention. However, due to the insufficient interface between energy-saving technology and urban planning systems, urban planning has not properly played a role in building energy conservation. Scientific and innovative technical methods are urgently needed to explore the role of coordinating multiple effective planning elements in overall building energy conservation through urban planning means. Due to climate conditions, there is high demand for conserving building energy in severe cold regions, but research into this has not been thoroughly carried out. Harbin, located in the northeast of China, belongs to the Dwa zone of the Köppen–Geiger Climate Classification, and is also a typical city of severe cold regions where the daily average temperature is lower than 5 °C for more than 145 days in a year. This study takes Harbin as an example and uses agent-based modeling to establish an urban-scale building energy consumption simulation model. The model contains four types of agents (a global agent, building agent, residential agent, and household equipment agent) and two types of influence factor modules (an urban form module and a climate module). Three simulation scenarios were designed, including a baseline scenario, an urban form scenario, and a climate scenario. The baseline scenario provided an overview of the urban-scale building energy consumption distribution characteristics of Harbin and served as a reference group for the simulation results of other scenarios. The urban form scenario results show that when the elements with a highly significant impact change by 1 unit, the retail building block has the most obvious change in energy consumption, up to 44.7 × 106 kWh/105 m2/year, while the office building block has the lowest change, with 34.5 × 103 kWh/105 m2/year. The fluctuation of electricity is the most obvious, but the total change is lower than the heating energy consumption. The climate scenario shows that the energy consumption of residential land in urban centers will consistently rise in the next 50 years, up to 5.3 × 105 kWh/105 m2/year. Based on these results, this study puts forward future building energy conservation planning strategies for Harbin, focusing on three aspects: the planning and control of urban form, the optimization and adjustment of the climate, and the building energy conservation planning system. These research results are expected to provide scientific support for transforming Harbin into a low-carbon city.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference66 articles.

1. IEA (2019). 2019 Global Status Report for Buildings and Construction, International Energy Agency.

2. Energy planning of low carbon urban areas-Examples from Finland;Hukkalainen;Sustain. Cities Soc.,2017

3. Spatially uneven development and low carbon transitions: Insights from urban and regional planning;Watson;Energy Policy,2015

4. The impact of indoor thermal conditions, system controls and building types on the building energy demand;Corgnati;Energy Build.,2008

5. Affordable construction towards sustainable buildings: Review on embodied energy in building materials;Cabeza;Curr. Opin. Environ. Sustain.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3