Fresh and Hardened Properties of Cementitious Composites Incorporating Firebrick Powder from Construction and Demolition Waste

Author:

Sevim OzerORCID,Alakara Erdinc H.ORCID,Guzelkucuk Selahattin

Abstract

Firebricks are generally used in furnace basins where glass, ceramics, and cement are produced. Firebricks have an important place in construction and demolition waste (CDW). However, there is a limited understanding of the effects on fresh and hardened state properties of cementitious composites. This study investigates the mechanical, physical, and microstructural properties of cementitious composites incorporating firebrick powder (FBP) from CDW. In this regard, the FBP was used at 5, 10, 15, 20, and 25% replacement ratio by weight of cement to produce cementitious composites. The consistency, setting characteristics, and 3, 7, and 28 days compressive and flexural strength tests of produced cementitious composites were performed. In addition, ultrasonic pulse velocity, water absorption, porosity, unit weight, and microstructure analysis of cementitious composites were conducted. As a result, the 28-day compressive strength of the cementitious composite mortars containing up to 10% firebrick powder remained above 42.5 MPa. The flow diameters increased significantly with the increase of the FBP. Therefore, it has been determined that the FBP can be used up to 10% in cementitious composites that require load-bearing properties. However, FBP might be used up to 25% in some cases. Using waste FBP instead of cement would reduce the amount of cement used and lower the cost of producing cementitious composites.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference40 articles.

1. Mehta, P.K., and Monteiro, P.J.M. (2006). Concrete Microstructure, Properties, and Materials, McGraw-Hill. [3rd ed.].

2. The greening of the concrete industry;Meyer;Cem. Concr. Compos.,2009

3. Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions;Dunuweera;Adv. Mater. Sci. Eng.,2018

4. Global CO2 emissions from cement production;Andrew;Earth Syst. Sci. Data,2018

5. Utilization of cashew nut-shell ash as a cementitious material for the development of reclaimed asphalt pavement incorporated self-compacting concrete;Tantri;Constr. Build. Mater.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3