Characterization of Shear Damage and Channel Reinforcement of Circumferential Joints between Shield Tunneling Segments Based on Numerical Simulation

Author:

Su Hang1,Deng Tao1,Yang Zengquan2,Qin Jianpeng3,Zheng Lu1ORCID

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

2. Fuzhou Metro Line 6 East Diversion Section Corporation Limited, Fuzhou 350009, China

3. China Construction Infrastructure Corporation Limited, Beijing 200135, China

Abstract

Shield misalignment is a common problem in shield tunnels, which seriously affects the safety and durability of tunnels. However, at present, there is a lack of research on the influence of shield misalignment on the shear capacity of the circumferential joint structure, and the failure mechanism of the circumferential joint structure before and after reinforcement is not clear. Therefore, this paper simulates the influence of misalignment on the performance mechanism of segmented circumferential connection and the effect of channel reinforcement on the ABAQUS platform. The simulation results are compared with the full-scale test results, and the results show that the shear failure process of the circumferential joint can be divided into three stages under the condition of no reinforcement. In the first stage, the vertical load increases, but the misalignment between the shield tunneling sections is very small. In the second stage, the load almost does not increase, but the degree of misalignment increases. In the third stage, the load–displacement relationship is nonlinear, indicating that the bending bolt has been sheared. Under the condition of unreinforced, the bolt will form two plastic hinges when it fails. After reinforcing the channel, the removal of the bolt forms only one plastic hinge. After channel steel reinforcement, the boundary area between the channel steel web and the steel plate first reaches the ultimate tensile strength of the steel plate, and the failure mode becomes channel steel reinforcement failure. Under the same shear load, the misalignment of the circumferential joint reinforced with channel steel is reduced. In this paper, the misalignment relationship of shear load and the yield of the bending bolt obtained through numerical calculation is consistent with the conclusion of the full-scale test. However, the circumferential connection misalignment obtained via numerical calculation is relatively small. The yield position of the bending bolt is also in good agreement with the test results, and the bolt strain obtained through the test is relatively small.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3